Calcot Schools Calculation Policy

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \frac{}{O} \\ & \frac{\bar{N}}{\bar{O}} \\ & \frac{0}{0} \end{aligned}$	Add single digit numbers and then 1 and 2 digit numbers to 20. Combine 2 parts to make a whole part. Add by starting at the biggest number and counting on. Regrouping to make 10 and then 20.	Add numbers using concrete objects, pictorial representations and mentally Including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three onedigit numbers Show that addition of two numbers can be done in any order (commutative). Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. Partitioning to add Column method (regrouping)	Add numbers with up to 3-digits. Use column method (up to 3 digits) with regrouping. Estimate the answer to a calculation and use inverse operations to check answers. Solve problems, including missing number problems, using number facts, place value, and more complex addition.	Add numbers with up to 4 digits using column methodregrouping Estimate and use inverse operations to check answers to a calculation. Solve addition and subtraction two-step problems in contexts.	Add whole numbers with more than 4 digits using column addition-regrouping. Addition with decimals with the same amount of decimal places.	Column methodregrouping. Add decimals with different amount of decimal places.

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Subtract single digit numbers and then 2 digit numbers (working within 120). Solve problems using concrete objects and pictorial representation Take away by counting back Find the difference Make 10-bar model	Subtract numbers using concrete objects, pictorial representations and mentally Including: a two-digit number and ones a two-digit number and tens two two-digit numbers Show that subtraction is not commutative. Counting back Find the difference Part whole model Make 10 Column method-no regrouping	Subtract numbers with up to 3-digits. Use column method (up to 3 digits) with regrouping. Estimate the answer to a calculation and use inverse operations to check answers. Solve problems, including missing number problems, using number facts, place value, and more complex subtraction.	Subtract numbers with up to 4 digits using column method-regrouping Estimate and use inverse operations to check answers to a calculation. Solve subtraction two-step problems in contexts.	Subtract whole numbers with more than 4 digits using column subtractionregrouping. Subtraction with decimals with the same amount of decimal places.	Column methodregrouping. Subtract decimals with different amount of decimal places.

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Solve one-step problems involving multiplication (by 2 and 5) using concrete and pictorial objects. Doubling Counting in multiples Repeated Addition	Doubling Counting in multiples Repeated addition with array which shows that X is commutative	Counting in multiples of $2,3,4,5,8,10$ Repeated addition Arrays-showing commutative multiplication Grid method	Recall multiplication facts for multiplication tables up to 12×12. Use place value, known and derived facts to multiply and divide mentally. multiplying together three numbers e.g, $5 \times 4 \times 10$ and understand commutatively in mental calculations. Recognise and use factor pairs. Multiply two-digit and three-digit numbers by a onedigit number using column multiplication. Use the distributive law to multiply two digit numbers by one digit.	Column multiplication using up to 4 digits multiplied by 1 or 2 digits. Multiply whole numbers and decimals by 10,100 or a thousand	Long multiplication (multi-digit numbers up to 4 digits by a two-digit whole number).

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Solve one-step problems involving division (by 2 and 4) using pictorial representations and concrete objects. Sharing objects into groups Division as grouping	Grouping within arrays Division as grouping	Division with arrays Division with a remainder Short division (2 digit by 1 digitconcrete and pictorial)	Recall division facts for multiplication tables up to 12×12. Division with arrays Division with a remainder. Short division (up to 3 digits by 1 digit)	Short division (up to 4 digits by a 1digit number, interpreting remainders for the context)	Short and long division (up to 4 digits by a two-digit whole number) Interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

Year 1

	Year 1		
	Use cubes to add two numbers together as a group or in a bar.	Add by starting at the biggest number and counting on. Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. $12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer. Place the larger number in your head and count on the smaller number to find your answer.	Regrouping to make 10 and then 20. $6+5=11$ Start with the bigger number and use the smaller number to make 10. Use pictures or a number line. Regroup number to make 10. $9+5=14$ $7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

	Year 2		
$\begin{aligned} & \frac{C}{O} \\ & \bar{i} \\ & \hline \mathbf{C} \\ & \hline \end{aligned}$	Adding 3 single digits $4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit. Add together three groups of objects. Draw a picture to recombine the groups to make 10. $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.	Partitioning $24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. $\begin{gathered} 44+23=67 \\ 20 \quad 3 \end{gathered}$	Column method with regrouping Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$

	Vocabulary Associated with Addition commonly used in Calcot Schools		
total	calculation	number sentence	
addition	add	sum of	
more	commutative	number bond	
equal to	how many more are needed		

Written methods are referred to as calculations or number sentences. We do not call them sums as this vocabulary is commonly used in addition to mean total e.g. What is the sum of 7 and 3? (10)

Year 1

Subtract single digit numbers and then 2 digit numbers (working within 1-20).

Taking Away ones using concrete objects and pictorial representations
Use physical objects, counters, cubes etc to show how objects can be taken away.

Cross out drawn objects to show what has been taken away.

$18-3=15$
$8-2=6$

Taking away by counting back
Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones.

13-4

Use counters and move them away from the group as you take them away counting backwards as you go.

Count back on a number line or number track

Start at the bigger number and count back the smaller number showing the jumps on the number line.

This can progress all the way to counting back using two 2 digit numbers.

Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Finding the Difference
Compare amounts and objects to find the difference.

Use cubes to build towers or make bars to find the difference

Use basic bar models with items to find the difference

Comparison Bar Models
Draw bars to find

Lisa is 13 years old. Her sister is 22 years old. find the difference in age between them.

Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.

Year 2

(Counting back, finding the difference, part whole model, making 10 as in Year 1) AND finding the difference on a number line by counting on and column method-no regrouping
Finding the difference by counting on, on a number line

Column method-no regrouping

Find the difference between two 2-digit numbers by counting on, in tens first and then in ones, on a marked number ine.Circle both the numbers on the line, then count on from the smallest to the largest. Add together the 10's and 1's to find the difference.

Use Base 10
to make the to mak
bigger number then
take the
smaller smaller away.

Show how you partition numbers to subtract.
Again make
the larger
number first.

raw the Base 10 or place value counters alongside the written calculation to help to show working.

$$
\begin{gathered}
47-24=23 \\
-\frac{4}{2} 0+4 \\
\frac{20+3}{3}
\end{gathered}
$$

This will lead to a clear written column subtraction.

	Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens. Now I can take away eight tens and complete my subtraction Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.		This will lead to an understanding of subtracting any number including decimals.

Vocabulary Associated with Subtraction commonly used in Calcot Schools

subtract	take away	minus	less
fewer	halve	difference	inverse
exchange			

Written methods are referred to as calculations or number sentences. We do not call them sums as this vocabulary is commonly used in addition to mean total e.g. What is the sum of 7 and 3? (10)

In the written column method we use the vocabulary 'exchange' when explaining how to manipulate numbers from other columns. Many people refer to this as borrowing but at Calcot Schools this will be known as exchanging.
Use practical activities to show how to

Year 2

\begin{tabular}{|c|c|c|c|}
\hline \& \multicolumn{3}{|c|}{Year 2
Doubling, Counting in multiples, repeated addition (as in Year 1) AND Arrays}

\hline \& \begin{tabular}{l}
Doubling

Use practical activities to show how to double a number.

Draw pictures to show how to double a number. Double 4 is 8

Partition a number and then double each part before recombining it back together.

 \&

Repeated Addition

Use different objects to add equal groups.

There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there?

放

动

2 add 2 add 2 equals 6

Write addition sentences to describe objects and pictures.

 \&

Arrays

Create arrays using counters/ cubes to show multiplication sentences. Draw arrays in different rotations multiplication sentences

Link arrays to area of rectangles

Use an array to write multiplication sentences and reinforce repeated addition.

$$
\begin{gathered}
00000 \\
00000 \\
00000 \\
5+5+5=15 \\
3+3+3+3+3=15 \\
5 \times 3=15 \\
3 \times 5=15
\end{gathered}
$$

\end{tabular}

\hline
\end{tabular}

Year 3

Counting in multiples, repeated addition, arrays (as in Year 2) AND Grid Method

Show the link with arrays to first introduce the grid method.

Move on to using Base 10 to move towards a more compact method.

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows

Fill each row with 126.

Calculation
4×126

Add up each column, starting with the ones making any exchanges needed.

Then you have your answer.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$\mathbf{2 1 0}+\mathbf{3 5}=\mathbf{2 4 5}$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

X	1000	$\mathbf{3 0 0}$	40	2
10	10000	3000	400	20
8	8000	2400	320	16

	Vocabulary Associated with	Multiplication commonly used in Calcot Schools	
multiply	multiple	groups of	array
times	double		fots of
scale up	product	prime	square

Written methods are referred to as calculations or number sentences. We do not call them sums as this vocabulary is commonly used in addition to mean total e.g. What is the sum of 7 and 3? (10)

$$
9 \div 3=3
$$

Division as grouping.

Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.

$96 \div 3=32$

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.

$$
96 \div 3=32
$$

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

Divide 28 into 7 groups How many are in each group?

Link division
to
multiplication
by creating
an array and
thinking
about the number sentences that can be created.

Draw an array and use lines to split the array into groups to make multiplication and division sentences.

Find the inverse of multiplication and division sentences by creating four linking number sentences.
$7 \times 4=28$
$4 \times 7=28$
$28 \div 7=4$
$28 \div 4=7$

| | Year 3 (Division with arrays, division with remainders as in Year 2) AND short division |
| :--- | :--- | :--- |

	Year 5 (Short division up to 4 digits by a 1 digit number and interpreting remainders) Year 6 Short division and long division (up to 4 digits by a 2 digit number)	
$\begin{aligned} & \frac{C}{O} \\ & -\frac{0}{8} \\ & \hdashline-1 \end{aligned}$	$8 \frac{27}{z^{2} 1^{5} 8}$ Extend to expressing results in different ways according to the context, including with remainders as fractions, as decimals or by rounding. For example: - Whole number remainder $=27$ r 2 - Fraction remainder $=27 \frac{2}{8}=27 \frac{1}{4}$ - Decimal remainder $=27 \frac{1}{4}=27 \frac{25}{100}=27.25$	Long Division $\begin{array}{rl} 024 r 12 \\ 4 & 088 \\ -48 \\ \hline 108 \\ -\quad 96 \\ \hline \end{array}$

	Vocabulary Associated with Division commonly used in Calcot Schools	
share	groups of	
factors	divide	
scale down	simplify	remainder

Written methods are referred to as calculations or number sentences. We do not call them sums as this vocabulary is commonly used in addition to mean total e.g. What is the sum of 7 and 3? (10)

